Thursday, December 13, 2007

Alfred Werner
Alfred Werner (December 12, 1866 - November 15, 1919) was a Swiss chemist who was a professor at the University of Zurich. He won the Nobel Prize in Chemistry in 1913 for proposing the octahedral configuration of transition metal complexes. Werner developed the basis for modern coordination chemistry. He was the first inorganic chemist to win the Nobel prize, and in fact the only one prior to 1973.
He was born in 1866 in Mulhouse, Alsace (which was then part of France, but which was annexed by Germany in 1871). He went to Switzerland to study chemistry at Zurich where he obtained his doctorate in 1890. After postdoctoral study in Paris, he returned to Zurich to teach in 1892, and became a professor as well a Swiss citizen in 1895.

Alfred Werner Coordination chemistry
Before Werner, chemists defined the valence of an element as the number of its bonds without distinguishing different types of bond. However in complexes such as [Co(NH3)6Cl3] for example, Werner considered that the Co-Cl bonds correspond to a "primary" valence of 3 at long distance, while the Co-NH3 bonds which correspond to a "secondary" or weaker valence of 6 at shorter distance. This secondary valence of 6 he referred to as the coordination number which he defined as the number of molecules (here of NH3) directly linked to the central metal atom. In other complexes he found coordination numbers of 4 or 8.
On these views, and other similar views, in 1904 Richard Abegg formulated what is now known as Abegg's rule which states that that the difference between the maximum positive and negative valence of an element is frequently eight. This rule was used later in 1916 when Gilbert N. Lewis formulated the "octet rule" in his cubical atom theory.
Today Werner's primary valence corresponds to the oxidation state, and the secondary valence is always called coordination number. The Co-Cl bonds (in the above example) are now classed as ionic, and each Co-N bond is a coordinate covalent bond between the Lewis acid Co and the Lewis base NH3.

No comments: