Tuesday, December 25, 2007


A differential equation is a mathematical equation for an unknown function of one or several variables which relates the values of the function itself and of its derivatives of various orders. Differential equations play a prominent role in engineering, physics, economics, and other disciplines.

Differential equation Introduction
The study of differential equations is a wide field in both pure and applied mathematics. Pure mathematicians study the types and properties of differential equations, such as whether or not solutions exist, and should they exist, whether they are unique. Applied mathematicians emphasize differential equations from applications, and in addition to existence/uniqueness questions, are also concerned with rigorously justifying methods for approximating solutions. Physicists and engineers are usually more interested in computing approximate solutions to differential equations, and are typically less interested in justifications for whether these approximations really are close to the actual solutions. These solutions are then used to simulate celestial motions, simulate neurons, design bridges, automobiles, aircraft, sewers, etc. Often, these equations do not have closed form solutions and are solved using numerical methods.
Mathematicians also study weak solutions (relying on weak derivatives), which are types of solutions that do not have to be differentiable everywhere. This extension is often necessary for solutions to exist, and it also results in more physically reasonable properties of solutions, such as shocks in hyperbolic (or wave) equations.
The study of the stability of solutions of differential equations is known as stability theory.

Types of differential equations
The theory of differential equations is closely related to the theory of difference equations, in which the coordinates assume only discrete values, and the relationship involves values of the unknown function or functions and values at nearby coordinates. Many methods to compute numerical solutions of differential equations or study the properties of differential equations involve approximation of the solution of a differential equation by the solution of a corresponding difference equation.

Connection to difference equations
A large number of fundamental laws of physics and chemistry can be formulated as differential equations. In biology and economics differential equations are used to model the behavior of complex systems. The mathematical theory of differential equations first developed together with the sciences where the equations had originated and where the results found application. However, diverse problems, sometimes originating in quite distinct scientific fields, may give rise to identical differential equations. Whenever this happens, mathematical theory behind the equations can be viewed as a unifying principle behind diverse phenomena. As an example, consider propagation of light and sound in the atmosphere, and of waves on the surface of a pond. All of them may be described by the same second order partial differential equation, the wave equation, which allows us to think of light and sound as forms of waves, much like familiar waves in the water. Conduction of heat, whose theory was brilliantly developed by Joseph Fourier, is governed by another second order partial differential equation, the heat equation. It turned out that many diffusion processes, while seemingly different, are described by the same equation; Black-Scholes equation in finance is for instance, related to the heat equation.

Famous differential equations

Picard-Lindelöf theorem on existence and uniqueness of solutions

No comments: